| File
name
|
MoNCHHuxley.[ch]
|
| Description
|
This
module implements an efficient version of the Hodgkin-Huxley general neural
cell model. Its fast operation is enabled through the use of tables for the
ion-channel voltage-dependent conductances (see ).
The module has two operating modes: "normal" and "voltage_clamp" respectively. At the time of writing, only the "normal" mode of operation has been tested. If these operating modes are prefaced with "debug_", e.g. "debug_normal", then a signal file "test.dat" will be output in the format:
membrane potential, leakage current, IC 1 (activating, inactivating currents), IC2 ...
This module is configured to be connected to up to three EarObjects. When the injection mode is "on", the first connected EarObject is always treated as an injected current. Otherwise the first and second EarObjects (or second and third if the injection mode is "on") are used as excitatory and inhibitory signals respectively.
The ion channels will be listed if the print ion channel tables mode is "On", but as these tables can be very long, it is mostly useful to set this option to "off". One would set this option to "On" for diagnostic or de-bugging purposes.
The format for the ion-channels is defined by the ion channel mode:
"User" or "Rothman". Examples of these ion-channel formats are given in the
example parameter files below. For more information about the "Rothman" Ion
channel mode, see ??.
|
| Example
parameter file format
"User" ion-channel mode.
|
#HHDCN1.par
normal Operation mode ("normal" or "voltage clamp").
on Injection mode ("on" or "off").
-0.010 Excitatory reversal potential (V).
-0.010 Inhibitory reversal potential (V).
80.0e-12 Cell capacitance (Farads).
100e-3 Resting signal duration - used when finding V0(s).
1e-8 Resting criteria, dV (V).
# Ion channel parameters
off Print ion channel tables mode ("on" or "off").
25e-9 Base leakage conductance (S).
-0.017 Leakage equilibrium potential (V).
User Ion channel mode ("User", later we'll have "wood" too).
3 Number of ion channel files.
ParFiles/NC/IonChans/NaPConnr1.par Sodium ion channel format file.
ParFiles/NC/IonChans/KPConnr1.par Potassium ion channel file.
ParFiles/NC/IonChans/KAConnr1.par Potassium 'A' ion channel file.
|
| Example
parameter file format
"Rothman" ion channel mode.
|
#HHDCNRo1.par
normal Operation mode ("normal" or "voltage clamp").
on Injection mode ("on" or "off").
-0.010 Excitatory reversal potential (V).
-0.010 Inhibitory reversal potential (V).
23e-12 Cell capacitance (Farads/cm^2).
100e-3 Resting signal duration - used when finding V0(s).
1e-5 Resting criteria, dV (V).
# Ion channel parameters
off Print ion channel tables mode ("on" or "off").
1.7e-9 Leakage conductance (S).
0.0028 Leakage equilibrium potential (V).
Rothman Mode option ("user", "rothman").
3 Number of ion channels.
22.0 Operating temperature (degrees C).
2.0 Leakge conductance Q10.
-0.120 Initial voltage for tables (V).
0.055 Final voltage for tables (V).
0.001 Voltage step for tables (V).
#Ion channels
Na+_Rothman Description.
0.055 Equilibrium potential (V).
325e-9 Base maximum conductance - 22oC (S).
2.0 Conductance Q10.
2 Activation exponent (int).
#Current parameters
# a b c d e f g h i j k
0.36 3 1 49 -1 49 -3 0 1 0 0 alpha
0 3 1 1 -0.4 3 1 58 -1 58 20 beta
2.4 3 0 1 1 68 3 0.8 10 1 61.3 alpha
0 3 1 1 3.60 3 0 1 1 21 -10 beta
K+High_Rothman Description.
-0.077 Equilibrium potential (V).
40e-9 Base maximum conductance - 22oC (S).
2.5 Conductance Q10.
1 Activation exponent (int).
#Current parameters
# a b c d e f g h i j k
0.0282 3 1 9 -1 9 -12 0 1 0 0 alpha
6 3 144 - 30 6 3 0 1 1 62 1 beta
0 0 0 0 0 0 0 0 0 0 0 alpha
0 0 0 0 0 0 0 0 0 0 0 beta
K+Low_Rothman Description.
-0.077 Equilibrium potential (V).
20e-9 Base maximum conductance - 22oC (S).
2.5 Conductance Q10.
1 Activation exponent (int).
#Current parameters
# a b c d e f g h i j k
0.107 3 0 1 1 33 -13.1 0 1 0 0 alpha
0.0188 3 30 -30.3 0 1 0 0 1 0 1 beta
0 0 0 0 0 0 0 0 0 0 0 alpha
0 0 0 0 0 0 0 0 0 0 0 beta
|
| Test
program directories
|
Tests/Models/Neuron,
Tests/SSPrograms
|
| Syntax
|
BOOLN RunModel_Neuron_HHuxley(EarObjectPtr
data);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
IonChanListPtr GetICListPtr_Neuron_HHuxley(void);
|
| Returns
|
A
pointer to the ion-channel list data structure.
|
| Syntax
|
double GetPotentialResponse_Neuron_HHuxley(double
potential);
|
| Returns
|
The
potential response of the cell (V). This is included for compatibility with
the other neural cell models.
|
| Syntax
|
double GetRestingResponse_Neuron_HHuxley(void);
|
| Returns
|
The
resting potential of the cell (V).
|
| Syntax
|
BOOLN SetCellCapacitance_Neuron_HHuxley(double
theCellCapacitance);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
BOOLN SetExcitatoryReversalPot_Neuron_HHuxley(double
theExcitatoryReversalPot);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
BOOLN SetICList_Neuron_HHuxley(IonChanListPtr
theICList);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
BOOLN SetInhibitoryReversalPot_Neuron_HHuxley(double
theInhibitoryReversalPot);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
BOOLN SetInjectionmode_Neuron_HHuxley(char
*theInjectionmode);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
BOOLN SetOperationMode_Neuron_HHuxley(char
*theOperationMode);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
BOOLN SetRestingCriteria_Neuron_HHuxley(double
theRestingCriteria);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
| Syntax
|
BOOLN SetRestingSignalDuration_Neuron_HHuxley(double
theRestingSignalDuration);
|
| Returns
|
TRUE
if the process is successful, otherwise it returns FALSE.
|
# # SimulationSpec main parameter file. # output.dat Output file. SimSpecs/NC/HHDCN1Resp.sim Simulation Specification file. # Misc. parameters. 1 Number of repeat runs.
Figure [129] The current step response of the Hodgkin-Huxley neural cell model.